Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; 21(10): 1103-1119, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240916

RESUMO

Clear cell renal cell carcinoma (CC-RCC) remains one of the most deadly forms of kidney cancer despite recent advancements in targeted therapeutics, including tyrosine kinase and immune checkpoint inhibitors. Unfortunately, these therapies have not been able to show better than a 16% complete response rate. In this study we evaluated a cyclin-dependent kinase inhibitor, Dinaciclib, as a potential new targeted therapeutic for CC-RCC. In vitro, Dinaciclib showed anti-proliferative and pro-apoptotic effects on CC-RCC cell lines in Cell Titer Glo, Crystal Violet, FACS-based cell cycle analysis, and TUNEL assays. Additionally, these responses were accompanied by a reduction in phospho-Rb and pro-survival MCL-1 cell signaling responses, as well as the induction of caspase 3 and PARP cleavage. In vivo, Dinaciclib efficiently inhibited primary tumor growth in an orthotopic, patient-derived xenograft-based CC-RCC mouse model. Importantly, Dinaciclib targeted both CD105+ cancer stem cells (CSCs) and CD105- non-CSCs in vivo. Moreover, normal cell lines, as well as a CC-RCC cell line with re-expressed von-Hippel Lindau (VHL) tumor suppressor gene, were protected from Dinaciclib-induced cytotoxicity when not actively dividing, indicating an effective therapeutic window due to synthetic lethality of Dinaciclib treatment with VHL loss. Thus, Dinaciclib represents a novel potential therapeutic for CC-RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Óxidos N-Cíclicos , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Feminino , Humanos , Indolizinas , Neoplasias Renais/patologia , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Piridínio , Mutações Sintéticas Letais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
2.
Am J Pathol ; 190(2): 484-502, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843498

RESUMO

Targeted therapeutics are needed for triple-negative breast cancer (TNBC). In this study, we investigated the activation of Src family of cytoplasmic tyrosine kinases (SFKs) and two SFK substrates-CUB-domain containing protein 1 (CDCP1) and protein kinase C δ (PKCδ)-in 56 formalin-fixed, paraffin-embedded (FFPE) TNBCs. Expression of SFK phosphorylated at Y416 (SFK_pY416+) in tumor cells was strongly associated with phosphorylation of CDCP1 and PKCδ (CDCP1_ pY743+ and PKCδ_pY311+), as assessed by immunohistochemistry, indicating increased SFK activity in situ. To enable biochemical analysis, protein extraction from FFPE tissue was optimized. Cleaved CDCP1 isoform (70 kDa) was expressed to a varying degree in all samples but only phosphorylated in TNBC tumor cells that expressed SFK_pY416. Interestingly, active SFK was found to be biphosphorylated (SFK_pY416+/pY527+). Biphosphorylated active SFK was observed more frequently in forkhead box protein A1 (FOXA1)- TNBCs. In addition, in SFK_pY416- samples, FOXA1+ TNBC tended to be SFK_pY527+ (classic inactive SFK), and FOXA1- TNBC tended to be SFK_pY527- (SFK poised for activation). Strong SFK_pY416 staining was also observed in tumor-infiltrating lymphocytes in a subset of TNBCs with high tumor-infiltrating lymphocyte content. This report will facilitate protein biochemical analysis of FFPE tumor samples and justifies the development of therapies targeting the SFK/CDCP1/PKCδ pathway for TNBC treatment.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Proteína Quinase C-delta/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Tirosina/metabolismo , Quinases da Família src/metabolismo , Idoso , Adesão Celular , Movimento Celular , Feminino , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Pessoa de Meia-Idade , Fosforilação , Prognóstico , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Vimentina/metabolismo
3.
Mol Cancer Ther ; 17(8): 1781-1792, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29720560

RESUMO

Clear cell renal cell carcinoma (CC-RCC) is a devastating disease with limited therapeutic options available for advanced stages. The objective of this study was to investigate HMG-CoA reductase inhibitors, also known as statins, as potential therapeutics for CC-RCC. Importantly, treatment with statins was found to be synthetically lethal with the loss of the von Hippel-Lindau (VHL) tumor suppressor gene, which occurs in 90% of CC-RCC driving the disease. This effect has been confirmed in three different CC-RCC cell lines with three different lipophilic statins. Inhibition of mevalonate synthesis by statins causes a profound cytostatic effect at nanomolar concentrations and becomes cytotoxic at low micromolar concentrations in VHL-deficient CC-RCC. The synthetic lethal effect can be fully rescued by both mevalonate and geranylgeranylpyrophosphate, but not by squalene, indicating that the effect is due to disruption of small GTPase isoprenylation and not the inhibition of cholesterol synthesis. Inhibition of Rho and Rho kinase (ROCK) signaling contributes to the synthetic lethality effect, and overactivation of hypoxia-inducible factor signaling resulting from VHL loss is required. Finally, statin treatment is able to inhibit both tumor initiation and progression of subcutaneous 786-OT1-based CC-RCC tumors in mice. Thus, statins represent potential therapeutics for the treatment of VHL-deficient CC-RCC. Mol Cancer Ther; 17(8); 1781-92. ©2018 AACR.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Ácido Mevalônico/uso terapêutico , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Renais/patologia , Ácido Mevalônico/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-29389655

RESUMO

Ultrasound has been used to inspect composite laminates since their invention but only recently has the response from the internal plies themselves been considered of interest. This paper uses modeling techniques to make sense of the fluctuating and interfering reflections from the resin layers between plies, providing clues to the underlying inhomogeneities in the structure. It shows how the analytic signal, analyzed in terms of instantaneous amplitude, phase, and frequency, allows 3-D characterization of the microstructure. It is found that, under certain conditions, the phase becomes locked to the interfaces between plies and that the first and last plies have characteristically different instantaneous frequencies. This allows the thin resin layers between plies to be tracked through various features and anomalies found in real composite components (ply drops, tape gaps, tape overlaps, and out-of-plane wrinkles), giving crucial information about conformance to design of as-manufactured components. Other types of defects such as delaminations are also considered. Supporting evidence is provided from experimental ultrasonic data acquired from real composite specimens and compared with X-ray computed tomography images and microsections.

5.
Mol Cancer ; 8: 17, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19267923

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs (about 21 to 24 nucleotides in length) that effectively reduce the translation of their target mRNAs. Several studies have shown miRNAs to be differentially expressed in prostate cancer, many of which are found in fragile regions of chromosomes. Expression profiles of miRNAs can provide information to separate malignancies based upon stage, progression and prognosis. Here we describe research prototype assays that detect a number of miRNA sequences with high analytical sensitivity and specificity, including miR-21, miR-182, miR-221 and miR-222, which were identified through expression profiling experiments with prostate cancer specimens. The miRNAs were isolated, amplified and quantified using magnetic bead-based target capture and a modified form of Transcription-Mediated Amplification (TMA). RESULTS: Analytical sensitivity and specificity were demonstrated in model system experiments using synthetic mature microRNAs or in vitro miRNA hairpin precursor transcripts. Research prototype assays for miR-21, miR-182, miR-221 and miR-222 provided analytical sensitivities ranging from 50 to 500 copies of target per reaction in sample transport medium. Specific capture and detection of mature miR-221 from complex samples was demonstrated in total RNA isolated from human prostate cancer cell lines and xenografts. CONCLUSION: Research prototype real-time TMA assays for microRNAs provide accurate and reproducible quantitation using 10 nanograms of input total RNA. These assays can also be used directly with tissue specimens, without the need for a preanalytic RNA isolation step, and thus provide a high-throughput method of microRNA profiling in clinical specimens.


Assuntos
Bioensaio/métodos , MicroRNAs/análise , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Humanos , Masculino , MicroRNAs/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...